handout 1.1 template.notebook August 28, 2015

Algebra 2 Ch. 1 Handout 1.1 Properties of Real Numbers

Digits:

 $\{0,1,2,3,4,5,6,7,8,9\}$

https://www.youtube.com/watch?v=0Z3Nii1oqMs

Subsets of Real Numbers

Natural Numbers:

{1,2,3,4,...}

Natural Numbers are the numbers used for counting.

Aug 2-4:30 PM

Aug 2-10:57 PM

Aug 20-7:20 PM

Whole Numbers:

 $\{0,1,2,3,4,\dots\}$

Whole Numbers are the natural numbers and 0.

Integers:

$$\{...,-3,-2,-1,0,1,2,3,4,...\}$$

The integers are the natural numbers (positive integers), their opposites (negative numbers), and 0.

Each negative integer is the <u>opposite</u>, or additive <u>inverse</u>, of a positive integer

Rational Numbers

are all the numbers that can be written as a quotients of integers den $\neq 0$

Each quotient must have a <u>non-zero</u> denominator.

Some rational numbers can be written as terminating decimals

All other rational numbers can be written

as repeating decimal

handout 1.1 template.notebook August 28, 2015

Irrational Numbers

are numbers that can't be written as a quotient of integers.

Their decimal representations neither

terminating

nor

repeating

If a positive rational number is not a perfect square such as 25 or $\frac{4}{9}$, then its square root is irrational number

The opposite or additive inverse of any number a is

The reciprocal or multiplicative inverse of any nonzero number a is

The absolute value of a real number is its

distance from acco

*Real numbers are graphed as points on a number line.

Closure Property-when you combined any two elements of the set, the result is also included in the set. If the element outside the set is produced, then the operation is not closed.

Why can't I CLOSED set!!

The round smiley faces are a closed set. No matter what operation is performed on round smiley faces, another round smiley face will be created Thus, there are always only round smiley faces in the box.

Aug 20-7:25 PM Aug 9-7:34 PM Aug 19-6:58 PM

Example:

If you multiply tworeal numbers, you will get another real number. Since this process is always true, it is said that the real numbers are "closed und the operation of multiplication". There is simply no way to escape the set real numbers when multiplying.

Closure: When you combine any two elements of the set, the result is also included in the set

Question: If you add two even numbers (from the set of even numbers), is the sum even? Checking: 10 + 12 = 22Yes. 22 is even. 6 + 10 = 16Yes. 16 is even. 2 + 102 = 104Yes, 104 is even. Since the sum (the answer) is always even, the set of even numbers is losed under the operation of addition. Let's check out this question. If you divide two even Does this mean th numbers (from the set of even numbers), is the even numbers are quotient (the answer) even? closed for all $16 \div 8 = 2$ Checking: $36 \div 6 = 6$ $24 \div 8 = 3$ When you find even ONE example that does not work, the set is not closed under that operation. The even numbers are ot closed under division.

If you change the order you will still get the same sum. example: 9 + 4 = 13 4 + 9 = 13If you change the order you will still get the same product. example: (9)(4) = 36 (4)(9) = 36

Aug 19-7:44 PM Aug 19-7:50 PM Aug 19-8:01 PM

Property Addition Multiplication Closure $a + b$ is a real number ab is a real number Comm. $a + b = b + a$ $ab = ba$ Assoc. $(a+b) + c = a + (b+c)$ $(ab)c = a(bc)$ Therefore $a + 0 = a$, $a + 1 = a$; $a + 1 = a$ Thurs $a + (-a) = 0$ $a \cdot 1 = a$ Dist. $a(b+c) = ab + ac$				
Comm. $a+b=b+a$ $ab=ba$ Asso. $(Regrossing)$ $a+b+c=a+(b+c)$ $(ab)c=a(bc)$ $a+0=a,$ $0+a=a$ $a+(-a)=0$ $a\cdot 1=a; 1\cdot a=a$ 1 Thurse $a+(-a)=0$ $a\cdot \frac{1}{a}=1$	Property	Addition	Multiplication	
(order) $a+b+c=a+(b+c)$ $(ab)c=a(bc)$ Then the $a+0=a$, $a+0=a$, $a+1=a$; $1\cdot a=a$ Thus $a+1=a$: a	Closure	a + b is a real number	ab is a real number	
Tdentity $a+0=a, 0+a=a$ $a+(-a)=0$ $a+1=a;1-a=a$ Thuerse $a+(-a)=0$ $a-1=a;1-a=a$	Comm. (order)	a + b = b + a	ab = ba	
Identity $0+a=a$ $a\cdot 1=a; 1\cdot a=a$ Inverse $a+(-a)=0$ $a\cdot \frac{1}{a}=1$		(a + b) + c = a + (b + c)	(ab)c = a(bc)	
2710C1 (a)	Identity		$a \cdot \underline{1} = a; \underline{1} \cdot a = a$	
Dist. $a(b+c)=ab+ac$	Inverse	a+(-a)=0	$a \cdot \frac{1}{a} = 1$	
` '	Dist.	a(b+c)=ab+ac		

Aug 10-6:47 PM

Aug 10-6:48 PM

Aug 2-5:29 PM

6. Which property is illustrated?

$$(3+0)-5=3-5$$

Identity prop +

7. Simplify:

a)
$$\left| 4\frac{1}{3} \right| = 4\frac{1}{3}$$
 b) $\left| -9.2 \right| = 9.2$

$$|2(3)-4(8)|$$

f)
$$|0-3| = |-3| = 3$$

Aug 2-8:43 PM

August 28, 201

Aug 22-7:59 AM