Geometry 12.2 Chords and Arcs

A line is	tangent	if it passes through precisely one	
point on the	circle.		
A line is	exterior	if it does not pass through any of the	
points on the			
A line is a	secant	if it passes through two points on the	
circle.			
A line	cannot pa	cannot pass through more than two points on a	
circle.			

Theorem 12-4 -- Within a circle or in congruent circles

(1) Congruent central angles have \rightleftharpoons chords

Theorem 12-4 -- Within a circle or in congruent circles

(2) Congruent chords have _____ arcs.

Theorem 12-4 -- Within a circle or in congruent circles

(3) Congruent arcs have ____ central angles

12.2 Chords and Arcs.notebook May 13, 2016

In the diagram, radius \overline{OX} bisects $\angle AOB$. What can you conclude?

$$\widehat{AX} \cong \widehat{XB}$$

Theorem 12-5 -- Within a circle or in congruent circles

(1) Chords equidistant from the center are <u>congruent</u>

Theorem 12-5 -- Within a circle or in congruent circles

(2) Congruent chords are <u>congruent</u> from the center.

Theorem 12.6 -- In a circle, a diameter that is perpendicular to a chord bisects **the chord** and its **arcs**.

Theorem 12.7 -- In a circle, a diameter that bisects a chord (that is not a diameter) is **perpendicular** to the chord.

Theorem 12.8 -- In a circle, the perpendicular bisector of a chord contains the **center** of the circle.

P and Q are points on circle O. The distance from O to PQ is 15 in., and PQ = 16 in. Find the radius of circle O.

Find the missing length to the nearest tenth.

$$3^{2}+7^{2}=r^{2}$$
 $9+49=r^{2}$
 $\sqrt{r^{2}}=\sqrt{58}$
 $r\approx 7.6$

Find the missing length to the nearest tenth.

Find the missing length to the nearest tenth.

$$y^{2} + 4^{2} = 6.8^{2}$$
 $\sqrt{y^{2} - \sqrt{30.24}}$
 $y \approx 5.5 \times 2$
 $x \approx 11$

 \overline{XY} and \overline{YZ} are perpendicular chords to circle C that are also equidistant from center C. What is the most precise name for quadrilateral MYNC? Explain.

Square, congruent chords are equidistant from the center and a diameter that bisects a chord is perpendicular to the chord.

12.2 Chords and Arcs.notebook May 13, 2016