Geometry

12.5 Circles in the Coordinate Plane

You can use the Distance Formula to find an equation of a circle with center (h, k) and radius r. Let (x, y) be any point on the circle. Then the radius r is the distance from (h, k) to (x, y).

Derive the equation of a circle from the distance

Standard Form of the equation of a circle:

$$(x-h)^2 + (y-k)^2 = r^2$$

Center: (h, k)

r = radius

Write in standard form the equation of a circle with center (-8, 0) and radius $\sqrt{5}$.

$$(x-h)^{2} + (y-k)^{2} = (r)^{2}$$

$$(x-(-s))^{2} + (y-0)^{2} = (rs)^{2}$$

$$(x+s)^{2} + y^{2} = 5$$

Write in standard form the equation of a circle with center (5, 8) and passes through the point (-15, -13).

First find the radius.

$$Y = \sqrt{(x_2 \cdot x_1)^2 + (y_2 \cdot y_1)^2}$$

$$Y = \sqrt{(-15 - 5)^2 + (-13 - 8)^2}$$

$$Y = \sqrt{(-20)^2 + (-21)^2}$$

Then write the equation of the circle in standard form.

$$(X-h)^{2}+(y-k)^{2}=r^{2}$$

$$(X-5)^{2}+(y-8)^{2}=(29)^{2}$$

$$(X-5)^{3}+(y-8)^{2}=841$$

Find the center and radius of the circle with equation $(x+4)^2 + (y-1)^2 = 25$. Then graph the circle.

A diagram locates a radio tower at (6, -12) on a coordinate grid where each unit represents 1 mi. The radio signal's range is 80 mi. Find an equation that describes the position and range of the tower.

When you make a call on a cellular phone a tower recieves the call. In a diagram, the centers of circles O, A, and B are locations of cellular telephone towers. Write an equation in standard form that describes the position and range of each tower.

that describes the position and range of each tower.

$$(X-h)^2 + (y-k)^2 = r^2$$
 $(X-16)^2 + (y-10)^2 = 100$
 $(X-0)^2 + (y-0)^2 = (2^2 + y^2 = 144)$

Write the standard equation of each circle.

$$(x-3)^2 + (y-5)^2 = 6^2$$

$$(x-3)^2 + (y-5)^2 = 36$$

center (-2, -1) radius
$$\sqrt{2}$$

$$(X-(-2))^{2}+(y-(-1))^{2}=(\sqrt{2})^{2}$$

$$(\sqrt{2})(2)=\sqrt{4}$$

$$(X+2)^{2}+(y+1)^{2}=2\sqrt{4}$$

Write the standard equation of the circle with center (2, 3) that passes through the point (-1, 1).

Find the center and radius of the circle with equation

$$(x-2)^{2} + (y+3)^{2} = 27.$$

$$\int r^{2} = 27.$$

$$C: (2,-3) \qquad r = 3\sqrt{3}$$