Geometry

Ch. 3 Handout 3.5

The Polygon Angle-Sum Theorem

A **polygon** is a closed plane figure with at least three sides that are segments. The sides intersect only at their endpoints and no two adjacent sides are collinear

Sides	Name	Sides	Names
3	Triangle	8	Octagon
4	Quadrilateral	9	Nonagon
5	Pentagon	10	Decagon
6	Hexagon	12	Dodecagon
7	Heptagon	n	shpahpiastapanhapeTypev75sputfTipHvvbputfTipVvvbputphvva.gon

1. Classify the polygon at the right by its sides. Identify it as convex or concave.

2. Name the polygon. Then identify its vertices, sides, and angles.

Polygon	Number of Sides		Number of Triangles Formed	Sum of the Interior Angle Measure
Triangle	3	Δ	1	180
Quadrilateral	4		2	2(180) = 360
Pentagon	5	\Diamond	3	3 (140) = 540
Hexagon	6		4	4(180) = 720
Octagon	8		6	6(180) = 1080
Decagon	10		8	8(180)=1440
N-gon	n			180 (1-2)

*Sum of the Interior Angle Measure: 180 (n-2)

Sum of each Interior Angle Measure of a regular polygon:
$$\frac{\text{Sum}}{\text{# of sides}} = \frac{180(n-2)}{n}$$

*Sum of the Exterior Angle Measure: 360

Theorem 3-14: Polygon Angle-Sum Theorem

The sum of the measures of the angles of an n-gon is (n-2)180.

Theorem 3-15: Polygon Exterior Angle-Sum Theorem

The sum of the measures of the exterior angles of a polygon one at each vertex is 360.

For the pentagon $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 + m \angle 5 = 360$

3. Find the sum of the measures of the angles of a decagon.

de cason:
$$n = 10$$

$$180(n-2)$$

$$180(10-2) = 180(8) = 1440$$

4. Find $m \angle X$ in quadrilateral XYZW.

5. Classify each polygon by its sides. Identify each as convex or concave.

6. a) Find the sum of the measures of the angles of a 13-gon.

b) The sum of the measures of the angles of a given polygon is 720. How can you use the sum ≠(n - 2)180 to find the number of sides in the polygon?

7. Pentagon ABCDE has 5 congruent angles. Find the measure of each angle.

8. a) In the figure at the right, find the m_1 in a regular hexagon by using the Polygon Exterior Angle-Sum

Is \(\(\) \(\) \(\) an exterior angle? Explain.

9. Find m/X in quadrilateral XYZW.

10. If the figure is a polygon, name it by its vertices. If the figure is not a polygon, explain why not.

11. A pentagon has two right angles, and a 120 angle. What is the measure of its fifth angle?

Find the measures of an interior angle and an exterior angle of each regular polygon.

a) decagon

b) 15-sided polygon

Assignment:

Day 1: pgs 161-164 1-15