Geometry

Ch. 5 Handout 5.3

Concurrent Lines, Medians, and Altitudes

The perpendicular bisectors of the sides of a triangle are concurrent at a point equidistant from the vertex.

<u>Circumcenter</u> -- the point of concurrency of the three perpendicular bisectors of each side of the triangle.

The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides.

The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides.

The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides.

Incenter of a triangle -- is the point of concurrency of the angle bisectors.

The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides.

$$FX = EX = DX$$

Incenter of a triangle -- is the point of concurrency of the angle bisectors.

The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side.

$$DC = \frac{2}{3}DJ, EC = \frac{2}{3}EG, FC = \frac{2}{3}FH$$
centroid
$$G \xrightarrow{\text{Centroid}} H$$

1. Find the center of the circle that circumscribes ΔXYZ .

2. City planners want to locate a fountain equidistant from three straight roads that enclose a park. Explain how they can find the location.

2. City planners want to locate a fountain equidistant from three straight roads that enclose a park. Explain how they can find the location.

Locate the fountain at the point of concurrency of the angle bisectors of the triangle formed by the three roads.

M is the centroid of ΔWOR , and WM = 16. Find WX and MX.

$$MX = 24$$
 $MX = 8$

Is \overline{KX} a median, an altitude, neither, or both?

5. Find the center of the circle that you can circumscribe about the triangle with vertices (0, 0), (-8, 0), and (0, 6).

6. Is \overline{MY} a median, an altitude, or neither. Explain.

Use the diagram for exercises 7-9.

7. Identify all medians and altitudes drawn for ΔPSV .

8. If SY = 15, find SM and $M\overline{Y}$.

Use the diagram for exercises 7-9.

9. If MX = 14, find PM and PX.

ch. 5 handout 5.3 Concurrent lines, medians, altitudes.notebook	December 10, 201	5