Algebra 2

Ch. 5 Handout 5.8
The Quadratic Formula

The quadratic formula is derived by completing the square on a quadratic equation.

Quadratic Formula

A quadratic equation written in standard form $ax^2 + bx + c = 0$ can be solved with the Quadratic Formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1. Use the quadratic formula to solve

a)
$$3x^{2} - 5x - 2 = 0$$
 $A = 5$
 $A = -5$
 $A = -6$
 $A =$

1. Use the quadratic formula to solve

c)
$$x^2 + 4x = 41$$

 $x^2 + 4x - 41 = 0$
 $a = 1$ $b = 4$ $c = -41$
 $x = -b \pm \sqrt{b^2 - 4ac}$
 $x = -4 \pm \sqrt{(40^2 - 4(1)(-41))}$

$$X = \frac{-4 + \sqrt{16 + 164}}{2\sqrt{36.5}}$$

$$X = \frac{-4 + \sqrt{180}}{2\sqrt{36.5}}$$

$$X = \frac{-4 + \sqrt{5}}{2\sqrt{5}}$$

$$X = \frac{-4 + \sqrt{5}}{2\sqrt{5}}$$

$$X = -2 + \sqrt{35}$$

2. The longer leg of a right triangle is 1 unit longer that the shorter leg. The hypotenuse is 3 units long. What i the length of the shorter leg? $a^2 + b^2 = c^2$

4. A player throws a ball up and toward a wall that is 17 ft high. The height h in feet of the ball t seconds after it leaves the player's and is modeled by $h = -16t^2 + 25t + 6$. If the ball makes it to where the wall is, will it go over the wall or hit the wall?

Use the quadratic formula to solve each equation.

5.
$$3x^2 - x = 4$$

5.
$$3x^2 - x = 4$$
 6. $-2x^2 = 4x + 3$

Use the quadratic formula to solve each equation.

7.
$$x^2 + 10x = -25$$

Discriminant of a Quadratic EquationThe discriminant of a quadratic equation in the form $ax^2 + bx + c = 0$ is the value of the expression $b^2 - 4ac$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 discriminant = $b^2 - 4ac$

Value of the Discriminant	Type and Number of Solutions for $ax^2 + bx + c = 0$	Examples of Graphs of Related functions $y = ax^2 + bx + c$
$b^2 - 4ac > 0$	two real solutions	two x-intercepts
$b^2 - 4ac = 0$	one real solution	one x-intercept
$b^2 - 4ac < 0$	no real solution two imaginary solutions	no x-intercept

Determine the type and number of solutions of

9.
$$2x^2 - 5x + 7 = 0$$
 10. $-3x^2 + 14x - 8 = 0$

10.
$$-3x^2 + 14x - 8 = 0$$

Determine the type and number of solutions of

11.
$$4x^2 - 5x + 10 = 7x + 1$$

Assignment:

Day 1: Pgs 293-295 1-37 odds