Algebra 2

Ch. 6 Handout 6.2 Polynomials and Linear Factors

Write the polynomial in standard form.

$$(x-1)(x+3)(x+4)$$

$$(x^{2}+4x+3x+12)$$

$$(x-1)(x^{2}+7x+12)$$

$$x^{3}+7x^{2}+12x-x^{2}-7x-12$$

$$x^{3}+6x^{2}+5x-12$$

2. Write the polynomial in standard form.

$$x(x-3)^{2}$$

$$x(x-3)(x-3)$$

$$(x^{2}-3x-3x+4)$$

$$x(x^{2}-6x+4)$$

$$x^{3}-6x^{2}+9x$$

3. Write the polynomial in factored form. Check by multiplication.

$$\frac{3x^{3} - 18x^{2} + 24x}{3x(x^{2} - 6x + 8)}$$

$$3x(x - 4)(x - 2)$$

4. Write each polynomial in factored form. Check by multiplication.

$$\frac{3x^{4} - 3x^{3} - 36x^{2}}{3x^{2}(x^{2} - x - 12)}$$

$$3x(x - 4)(x + 3)$$

A multiple zero is

a zero of a linear factor that is repeated in the factored form of the polynomial.

The multiplicity of a zero of a polynomial function is

the number of times the related linear factor is repeated in the factored form of the polynomial

$$y = x^{2}(x-1)^{3}(x+3)$$

$$0 = (x)(x)(x-1)(x-1)(x-1)(x+3)$$

$$X = 0 \quad X = 0 \quad X - 1 = 0 \quad X - 1 = 0 \quad X + 3 = 0$$

$$X = 1 \quad X = 1 \quad X = 1$$

$$X = 1 \quad \text{mult. } 2$$

$$X = 1 \quad \text{mult. } 3$$

$$X = -3$$

$$y = \left(x + \frac{1}{2}\right)(x - 4)^{3}$$

$$0 = (x + \frac{1}{2})(x - 4)x - 4(x - 4)$$

$$x + \frac{1}{2} = 0 \quad x - 4 = 0 \quad x - 4 = 0$$

$$x = \frac{1}{2} \quad x = 4 \quad x = 4$$

$$x = \frac{1}{2} \quad x = 4 \quad x = 4$$

$$y = x^{3} - 2x^{2} - 48x$$

$$0 = x(x^{2} - 2x - 48)$$

$$0 = x(x - 8 x + 6)$$

$$x = 0 x - 8 = 0 x + 6 = 0$$

$$x = 8 x = -6$$

$$2evs: x = 0, x = 6$$

$$f(x) = x^{3} - 81x$$

$$y = x^{3} - 81x$$

$$0 = x(x^{2} - 81)$$

$$0 = x (x - 9)(x + 9)$$

$$x = 0 \qquad x + 9 = 0$$

$$x = 9 \qquad x = -9$$

$$2evos: x = 0, x = 9, x = -9$$

$$y = x^{4} + 3x^{3} - x^{2} - 3x$$

$$0 = x (x^{3} + 3x^{2} - x - 3)$$

$$0 = x [x^{3} + 3x^{2} + -x + -3]$$

$$0 = x [(x^{3} + 3x^{2}) + (-x + -3)]$$

$$0 = x [x^{2}(x + 3) + -1(x + 3)]$$

$$0 = x (x + 3)(x^{2} - 1)$$

$$0 = x (x + 3)(x^{2} - 1)$$

$$0 = x (x + 3)(x - 1)(x + 1)$$

$$x = 0 x - 1 = 0 x + 1 = 0$$

$$2x = 0 x - 1 = 0 x + 1 = 0$$

$$2x = 0 x - 1 = 0 x + 1 = 0$$

Factor Theorem The x - a is a linear factor of a polynomial if and if the only if the value a is a zero of the related polynomial function.

Write a polynomial in standard form with zeros at 2, -3, and 0.

Write a polynomial in standard form with zeros at 4, -1, and -1

Write a polynomial in standard form: 2 multiplicity 3

$$X=2 \quad X=2$$

$$X=2 \quad X=2$$

$$(X-2)(X^2-2X-2X+4)=0$$

$$(X^3-4X^2+4X-2X^2+8X-8=9)$$

$$X^3-4X^2+4X-2X^2+8X-8=9$$

$$X^3-4X^2+4X-2X^2+8X-8=9$$

$$X^3-4X^2+4X-2X^2+8X-8=9$$

Find the relative maximum, relative minimum, and zeros of y = (x + 1)(x - 1)(x + 3). Graph the function.

12. Find the relative maximum, relative minimum, and zeros of the polynomial function.

$$y = x^3 - 2x^2 - 15x$$

A metalworker wants to make an open box from a sheet of metal, by cutting equal squares from each corner as shown.

- a) Write an expression for the length, width, and height of the open box.
- b) Use your answer from part (a) to write a function for the volume.
- c) Graph the function. Find the maximum volume that can be contained by the box and the size of the square cut that produces this volume.

- 3. Another airline has different carry-on luggage regulations. The sum of the length, width, and depth may not exceed 50 in.
- a) Assume that the sum of the length, width, and depth is 50 in. and the length is 10 in. greater than the depth. Graph the function relating the volume V to depth x. Find the x-intercepts. What do they represent?
 - b) Describe a realistic domain for V(x).
 - c) What is the maximum possible volume of the box? What are the corresponding dimensions of the box?

$$x^2 + 3x - 4 = 0$$

$$(x+4)(x-1)=0$$

$$x + 4 = 0$$
 $x - 1 = 0$

$$x = -4$$
 $x = 1$

1. -4 or 1 are solutions of
$$x^2 + 3x - 4 = 0$$

2. -4 or 1 are x-intercepts of the graph of
$$y = x^2 + 3x - 4$$

3. -4 or 1 are zeros of
$$y = x^2 + 3x - 4$$

$$x^{2} + 3x - 4 = 0$$

$$(x + 4)(x - 1) = 0$$

$$x + 4 = 0$$

$$x + 4 = 0$$

$$x = -4$$
Equivalent Statements about Polynomials

1. -4 or 1 are solutions of $x^{2} + 3x - 4 = 0$
2. -4 or 1 are x-intercepts of the graph of $y = x^{2} + 3x - 4$
3. -4 or 1 are zeros of $y = x^{2} + 3x - 4$
4. $(x - 1)$ and $(x + 4)$ are factors of $x^{2} + 3x - 4$

Assignments:

Day 3: pgs 317 (13, 38, 39, 40, 48, 50)