Algebra 2 Ch. 7 Handout 7.1 Roots and Radical Expressions

nth Root

For any real numbers a and b, and any positive integer, if $a^n = b$. then a is the **nth root** of b.

nth Root of a^n , a < 0

For any negative real number a, $\sqrt[n]{a^n} = |a|$ when *n* is even.

- 1. Find all the real square roots of each number.
 - a. 121

$$d. -\frac{1}{25}$$
Not Real

2. Find all the real cube roots of each number.

$$\frac{1}{216}$$

3. Find each real-number root.

a.
$$\sqrt[3]{-1000}$$

b.
$$\sqrt{-81}$$

C.
$$\sqrt{0.49} - \sqrt{\frac{49}{100}} = \sqrt{\frac{49}{100}} = \sqrt{\frac{7}{10}} = \sqrt{\frac{7}{10}}$$

3. Find each real-number root.

4. Simplify each radical expression.

a. $\sqrt{9x^{10}}$

3 x 12 3 x 5

C. $\sqrt[3]{-8x^3z^5}$

4. Simplify each radical expression.

e.
$$\sqrt{108x^7y^{14}}$$
 $\sqrt{36.3x^6x^{14}}$
 $\sqrt{36.3x^6x^{14}}$
 $\sqrt{36.3x^6x^{14}}$

- 5. The weight of an orange is related to its diameter by the formula $w = \frac{d^3}{4}$, where d is the diameter in inches and w is the weight in ounces. Find the diameter of each orange to the nearest hundredth of an inch.
 - a. 3 OZ.

 b. 5.5 OZ $w = \frac{d^3}{4}$ $(4) 5.5 = \frac{d^3}{4}(4)$ $(4) 3 = \frac{d^3}{4}(4)$ $3 = \frac{d^3}{4}(4)$ $4 \approx 2.4 \text{ in}$

c. 6.25 oz.

Quick Check:

Find each real-number root.

1.
$$\sqrt[3]{-27}$$

2.
$$\sqrt{49}$$

Quick Check:

Simplify each radical expression. Use absolute value symbols when needed.

3.
$$\sqrt{4x^2y^{13}}$$

4.
$$\sqrt[4]{x^{17}y^{12}}$$

Quick Check:

5. The formula for the volume of a cone with a base of radius and height r is $V = \frac{1}{3}\pi(r^3)$. Find the radius to the nearest hundredth of a centimeter if the volume is $40 \, cm^3$.

Assignment:

pgs 372-373 13-28 all, 39-54 all